
GaAs MESFET MODEL

Model Features

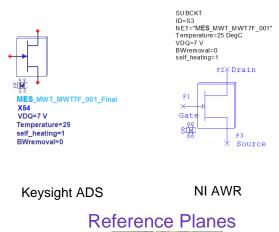
#Modelithics

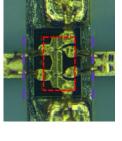
- Broadband (DC to 40 GHz)
- Large-signal model (Modelithics-Enhanced Angelov)
- Measurement Validations:
 - Pulsed I-V (25 C to 85 C)
 - Multi-bias S-parameters (25 C to 85 C)
 - Load pull (25 C), 12 and 18 GHz
 - Noise parameters (25 C)
 - 1/f noise
 - IP3 linearity validation, 12 GHz, 7 V 60%Idss
- O- Advanced model feature: enabling intrinsic I-V sensing

MES-MWT-MWT7F-001 MwT-7F Discrete GaAs MESFET

Model Description

The MES-MWT-MWT7F-001 is a non-linear model for the MwT-7F a discrete 250 um GaAs MESFET(additional information is available at <u>www.mwtinc.com</u>). The model is based on the extraction of a customized Angelov non-linear model that is validated against the following Modelithics measurement data: I-V, S-parameters, load pull and IP3.

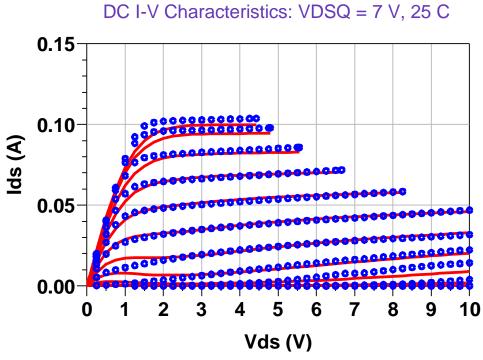

Technical Notes


- Model is optimized for 2, 4 and 7 V operation (22 mA (30% IDSS), 36 mA (50% IDSS) and 44 mA (60% IDSS)).
- Model Parameters:
 - VDSQ: For setting the optimum bias point of the model (default=7 V).
 - **Temperature:** represents the backside ambient temperature, validated at 25 C and 85 C.
 - Self_heat: switch for the electrothermal model (0 or 1), 0= self-heating is turned off, 1 (default)= self-heating is turned on.
 - BWremoval: 0 includes wire assembly (only) used in measurements, 1 (default) sets model reference planes at the center of the gate, drain, and source bond pads.
 - Modelithics Micro Probe Accessories part number 0503, 5 mil Alumina adapter substrates were used to access the bond pads of discrete die.

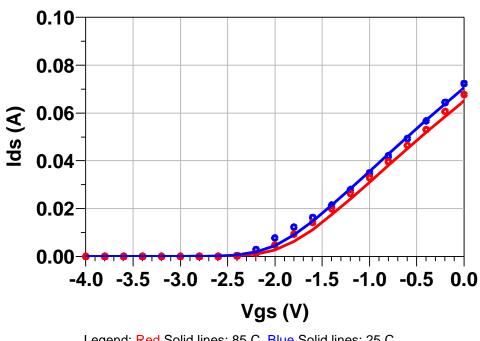
Model Simulation Settings

- I-V: self_heat: 0 for I-V simulations (self heating model turned OFF), Temperature=25 C
- **S-Parameters:** self_heat: 1 for CW bias, Temperature=25 C
- Load Pull Single-tone and two tone validations: self_heat: 1 for CW bias; Temperature=25 C.

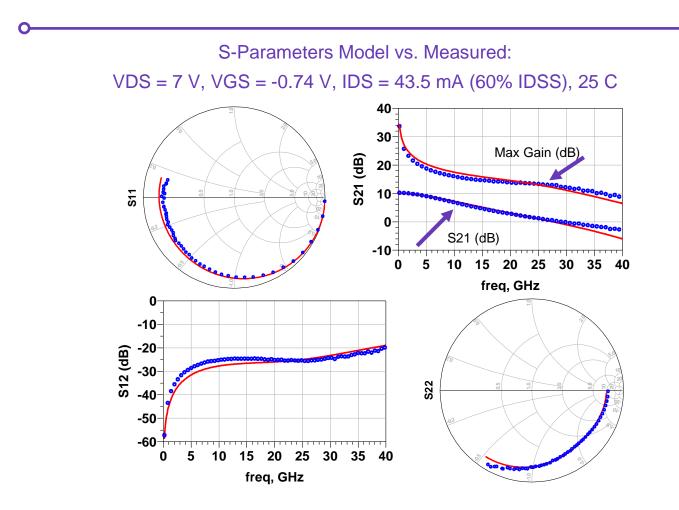
Model Representation

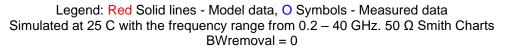


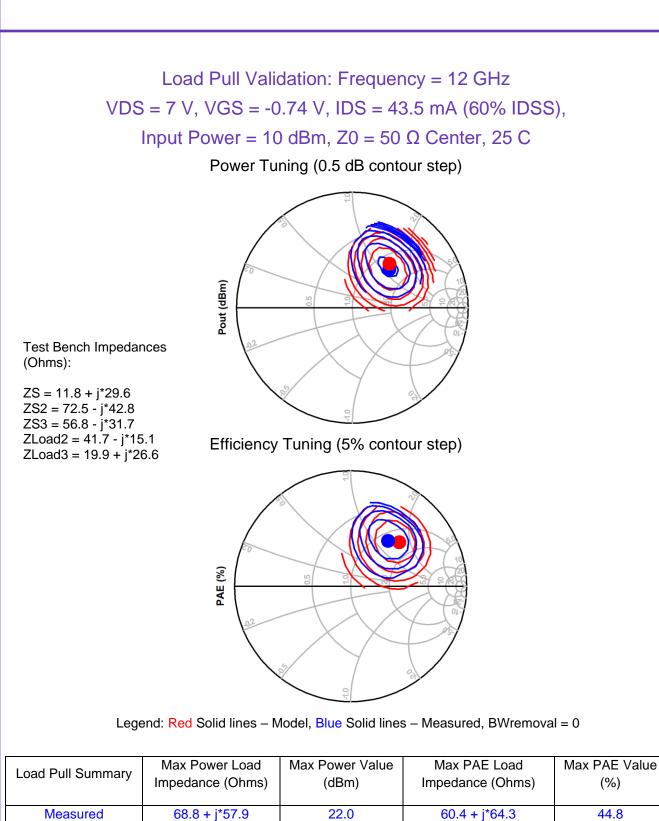
Model and Measurement Reference Planes (BWremoval=1)


Model and Measurement Reference Planes (BWremoval=0)

Legend: Red Solid lines - Model data, O Symbols - Measured data Simulated at 25 C with VGS varying from -4 to 1 V in steps of 0.4 V, VDS varying from 0 to 10 V in steps of 0.25 V. Model self_heat = 0.







#Modelithics

www.modelithics.com

MES-MWT-MWT7F-001

57.1 + j*55.3

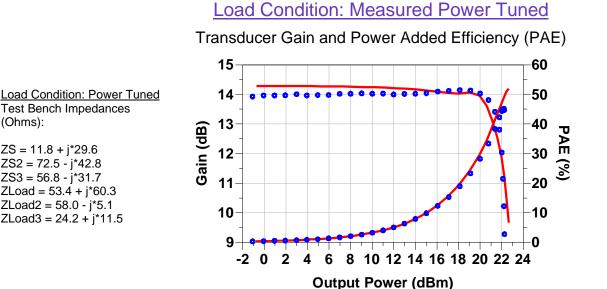
Model

22.1

Load pull data has been processed for contour display

67.9 + j*73.4

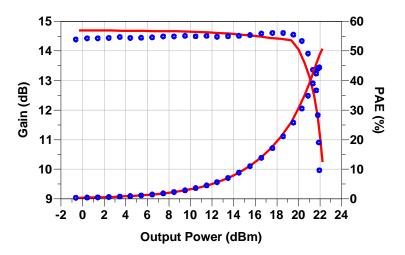
(%)


44.8

49.5

#Modelithics

#Modelithics


Test Bench Impedances (Ohms):

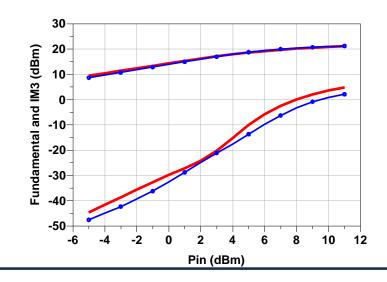
ZS = 11.8 + j*29.6 ZS2 = 72.5 - j*42.8 ZS3 = 56.8 - j*31.7 ZLoad = 53.4 + j*60.3ZLoad2 = 58.0 - j*5.1ZLoad3 = 24.2 + j*11.5

Legend: Red Solid lines - Model data, O Symbols - Measured data, BWremoval = 0

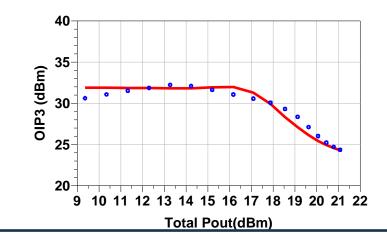
Load Condition: Measured PAE Tuned

Transducer Gain and Power Added Efficiency (PAE)

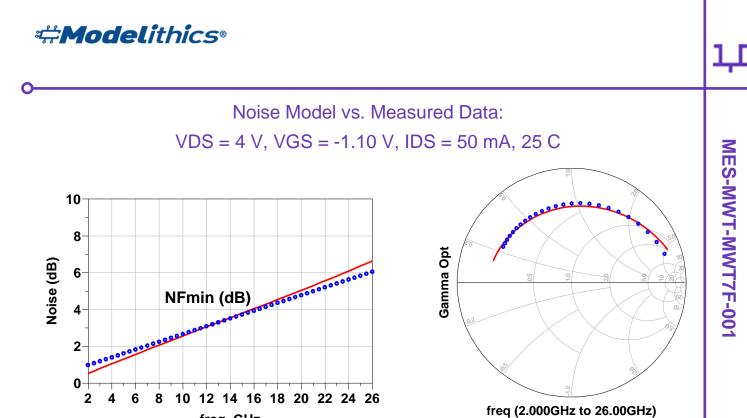
Load Condition: PAE Tuned Test Bench Impedances (Ohms):


 $ZS = 11.8 + j^{*}29.6$ ZS2 = 72.5 - j*42.8 ZS3 = 56.8 - j*31.7 ZLoad = 49.1 + j*67.4ZLoad2 = 54.0 - j*10.3ZLoad3 = 21.8 + j*12.0

Legend: Red Solid lines - Model data, O Symbols - Measured data, BWremoval = 0


#Modelithics

-0



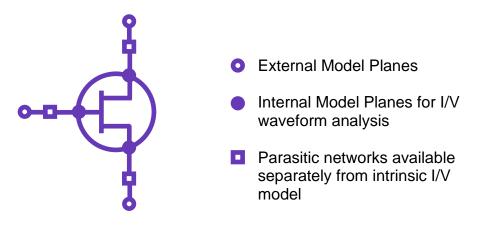
Simulated (solid line) and measured (symbols) tuned for max PAE. Source impedance = (11.6 + j*28.8) Ohms, load impedance = (53.8 + j*66.4) Ohms. Frequency =12 GHz, 5 MHz tone spacing, Vds = 7 V, 44 mA (60%Idss)

Simulated (solid line) and measured (symbols) tuned for max PAE. Source impedance = (11.6 + j*28.8) Ohms, load impedance = (53.8 + j*66.4) Ohms. Frequency =12 GHz, 5 MHz tone spacing, Vds = 7 V, 44 mA (60%Idss)

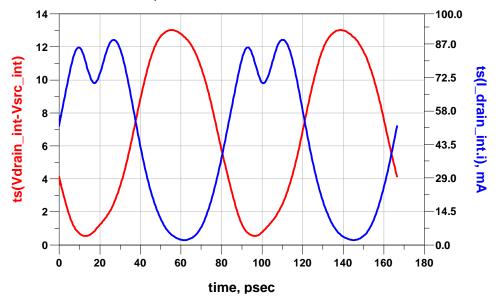
Legend: Red Solid lines - Model data, O Symbols - Measured data Simulated at 25 C with the frequency range from 2 – 26 GHz, BWremoval = 0 50 Ω Smith Chart.

freq, GHz

1/f Noise Performance VDS = 4 V, VGS = -1.15 V, IDS = 22 mA, 25 C -100 Noise Current Density (dBA^2/Hz) -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 1Ė1 1Ė2 1Ė3 1Ė4 1Ė5 1Ė6 1Ė7 Frequency (Hz)


Legend: Red Solid lines - Model data simulated to 10 MHz offset, O Symbols - Measured data to 110 kHz Simulated at 25 C, BWremoval = 0

sales@modelithics.com

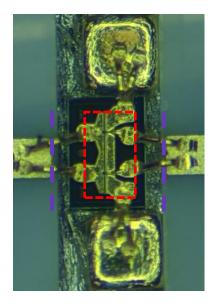

MES-MWT-MWT7F-001

Get Vds and Ids model data near current generator intrinsic planes while tuning.

Example Plot of internal node Ids and Vds

Results based on harmonic balance simulation at 8 dBm input power, PAE matched at 12 GHz, 7 V, and 43.5 mA. ZS = $(11.8 + j^{2}29.6)$ Ohms, ZS2 = $(72.5 - j^{4}2.8)$ Ohms, ZS3 = $(56.8 - j^{3}31.7)$ Ohms, ZLoad = $(53.4 + j^{6}0.3)$ Ohms, ZLoad2 = $(58.0 - j^{5}5.1)$ Ohms, ZLoad3 = $(24.2 + j^{1}1.5)$ Ohms

www.modelithics.com


sales@modelithics.com

Rev. 20230627 ©2023

Notice: Modelithics models represent as-measured characteristics of sample devices using specific testing and fixture configurations. The accuracy of models may vary as a result of differing device characteristics, test fixtures, or test conditions. No liability shall be assumed by Modelithics for use of its models, or for any infringement of rights of third parties that may result from their use. Modelithics reserves the right to revise its models and its product line without prior notice.

Assembly Diagram

Test fixture details:

<u>Modelithics Micro Probe Accessories</u> part number 0503, 5 mil Alumina adapter substrates were used to access the bond pads of discrete die.

- Device thickness: 3.93 mil
- Test board thickness: 5 mil
- Bond-wire diameter: 1 mil gold
- Gate bond-wire length: 8 mil +/-2 (average)
- Drain bond-wire length: 6 mil +/-2 (average)
- Source bond-wire length (two wires per source pad): 6 mil +/-2 (average)
- Metal standoff external next to each source pad is 4 mil thick, its purpose is to shorten the bondwire lengths to the source/ground.
- Blue line is model planes with bondwires ON (BWremoval=0)
- Red line is model planes with bondwires OFF (BWremoval=1)

Model and Datasheet Revision Notes

- 03/07/2023 Original model and datasheet development
- 06/21/2023 Datasheet updated with IP3 validation

www.modelithics.com

sales@modelithics.com

Rev. 20230627 ©2023

Notice: Modelithics models represent as-measured characteristics of sample devices using specific testing and fixture configurations. The accuracy of models may vary as a result of differing device characteristics, test fixtures, or test conditions. No liability shall be assumed by Modelithics for use of its models, or for any infringement of rights of third parties that may result from their use. Modelithics reserves the right to revise its models and its product line without prior notice.